Aging in heterozygous Dnmt1-deficient mice: effects on survival, the DNA methylation genes, and the development of amyloidosis.
نویسندگان
چکیده
We previously reported that heterozygous DNA methyltransferase 1-deficient (Dnmt1(+/-)) mice maintain T-cell immune function and DNA methylation levels with aging, whereas controls develop autoimmunity, immune senescence, and DNA hypomethylation. We therefore compared survival, cause of death, and T-cell DNA methylation gene expression during aging in Dnmt1(+/-) mice and controls. No difference in longevity was observed, but greater numbers of Dnmt1(+/-) mice developed jejunal apolipoprotein AII amyloidosis. Both groups showed decreased Dnmt1 expression with aging. However, expression of the de novo methyltransferases Dnmt3a and Dnmt3b increased with aging in stimulated T cells from control mice. MeCP2, a methylcytosine binding protein that participates in maintenance DNA methylation, increased with age in Dnmt1(+/-) mice, suggesting a mechanism for the sustained DNA methylation levels. This model thus provides potential mechanisms for DNA methylation changes of aging, and suggests that changes in DNA methylation may contribute to some forms of amyloidosis that develop with aging.
منابع مشابه
O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملEffects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کاملP-94: Mouse Embryo Vitrification Cannot Effect on Global DNA Methylation in Preimplantation Stage
Background: Embryo vitrification was effectively used for assisted reproductive techniques. Despite the undeniable benefits of vitrification, cooling and warming stress, and cytotoxicity of cryoprotectant may affect the DNA methylation that have an important role in gene activation and silencing. In the present study effects of 2-cell embryo vitrification on DNA methylation in hatched blastocys...
متن کاملI-50: Embryo Loss Due to Epigenetic Anomaliesin the Male Germ Line: Role of Estrogen
Background: To investigate if aberrant methylation and expression of imprinted genes of the Igf2-H19 locus in the spermatozoa and embryos could be a paternal epigenetic factor involved in early embryo loss To elucidate the role of estrogen in acquisition of the imprinting at the Igf2-H19 locus during spermatogenesis Materials and Methods: Adult male rats of Holtzman strain were administered tam...
متن کاملMelatonin Improves The Developmental Competence of Goat Oocytes
Objective DNA methylation is one the epigenetic mechanisms, which is critically involved in gene expression. This phenomenon is mediated by DNA methyl-transferases and is affected by environmental stress, including in vitro maturation (IVM) of oocytes. Melatonin, as an antioxidant, may theoretically be involved in epigenetic regulation via reductions of reactive oxygen species. This study was p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journals of gerontology. Series A, Biological sciences and medical sciences
دوره 61 2 شماره
صفحات -
تاریخ انتشار 2006